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Abstract
Many shared mobility solutions have been developed over recent decades. In the case of mobile technological innovations,
new solutions that are more flexible to user demands have emerged. These dynamic solutions allow users to be served by
optimizing different aspects such as the detour to pick up a passenger or the waiting time for users. Such methods make it
possible to satisfy requests quickly and to match as closely as possible user expectations. However, these approaches usually
use fleets composed of numerous small-capacity vehicles to serve each user. By contrast, microtransit aims to serve a more
massive demand than conventional shared mobility methods. Our study falls within this context. It aims to identify recurrent
patterns of mobility and to verify the possibility of implementing microtransit lines to serve them. In other words, the pro-
posed method identifies spatial and temporal areas where the implementation of a flexible transport line would meet a
potential mobility demand. The recurrence of trips in these specific areas provides a guarantee of the reliability of the
designed lines.
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The sharing of trips in the context of urban mobility has
been the subject of numerous studies in the literature
over the past 10 years. The emergence of new mobile
technologies and technical innovations (GPS, internet
wireless connection for mobile phones, and others) have
allowed the quick deployment of new shared mobility
systems. Many systems have then appeared in urban
areas: ridesharing, carsharing, carpooling, bike-sharing,
and so forth. These systems aim to overcome problems
with other forms of transport, such as the lack of flexibil-
ity in public transport or the harmful environmental
effects linked to the use of individual vehicles. As shown
in Alonso-Mora et al. (1) and Najmi et al. (2), these solu-
tions have made it possible to offer demand-tailored ser-
vices and thus reduce certain inconveniences such as
waiting or travel times. However, these highly dynamic
solutions are designed to work with large fleets of vehi-
cles. The dispersal of the vehicles across a given territory
allows users to be picked up and dropped off as quickly
as possible and with minimal detours. The vehicles can
generally carry from 2 to 10 passengers. Unlike classic
public transport, these methods make it possible to
respond to an instantaneous and highly targeted

geographic demand for mobility to minimize the incon-
venience for each user. However, these approaches are
not suitable for the design of massive customized lines.
Indeed, the techniques used to find the optimal way to
serve users are usually related to combinatorial optimiza-
tion problems: the vehicle routing problem, the dial-a-
ride problem, and so forth. By nature, these problems
are not solvable in polynomial time, but in exponential
time depending on the size of the inputs. That is why it is
not conceivable to use these methods for large-capacity
vehicles serving many users.

To overcome this problem, the literature has in part
turned to new approaches, such as microtransit or custo-
mized buses (3). Microtransit is defined as a multi-
passenger transport solution (usually a shuttle or bus)
from the private sector, which can be operated on fixed,
flexible, or on-demand routes and times (4). The
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objective of this system is to detect and pool a consistent
number of similar trips in large-capacity vehicles while
offering more flexibility than public transport. It comes
down to proposing a supply adapted to user demand
without necessarily adapting the line to each request
individually. Our works fall within this framework.

Even if works such as Simini et al. (5) allow the detec-
tion of potential corridors of mobility and provide consid-
erable benefits in the literature, they remain relatively far
from our goal. Indeed, we do not aim to identify potential
demand based on attributes such as population density or
other sociologic aspects. This work instead focuses on
developing a method to identify a recurrent demand for
shared mobility and then on studying the feasibility of a
mobility solution to meet this demand. Unlike traditional
shared mobility systems, the state of the art concerning
microtransit is sparse. Despite the numerous studies that
have been carried out in the scientific (6, 7) and generalist
(8) literature to analyze specific cases, only a few works
have focused on the theory of designing microtransit or
customized bus lines. Alonso-González et al. (9) provide
an analysis of the interactions between demand responsive
transit (microtransit, customized bus) and fixed transit.
Ma et al. (10) propose a method for improving the custo-
mized bus network in Bejing. Although interesting, the
main disadvantage of this study is that the number of
seats per vehicle is fixed at 30. Otherwise, the authors do
not consider vehicles of different sizes depending on the
line and the estimated number of users. They propose
improving on this in future work. Although these studies
constitute an interesting contribution to the literature,
they do not provide more information about the auto-
matic detection of potential recurrent mobility demand.
To the best of our knowledge, only one very recent paper
addresses the subject of demand recurrence in the respon-
sive transit lines design (11). In their study, the authors
use the most frequent trip requests to adapt shuttles
routes. In this case, historical data are used to adapt the
functioning of the lines in real time, but not to entirely
design new customized lines. Thus, this study also differs
from ours. Indeed, we provide a method for identifying
robust patterns of micro-mobility thanks to the analysis
of a large data set of historical user trips. This study could
constitute the first step to ensuring microtransit system
reliability and offer an additional guarantee before
deploying a mobility service. As mentioned in Volinski
(12), microtransit systems can use a static or flexible rout-
ing system and schedules. It is important to underline that
we do not propose a flexible or optimized method to
match perfectly user demand in a specific area. The goal
is rather to prove that the proposed method makes it pos-
sible to detect and serve a substantial and recurring
shared mobility demand.

The rest of the paper is organized as follows. The sec-
tion, Estimation of the Demand presents the data set
and introduces the methodology used to detect the mobi-
lity demand patterns. To do this, we analyze a data set
containing 314,245 trips from June 1st to 30th, 2011, in
New York. The section, Customized Supply Design is
dedicated to designing customized transport lines to sat-
isfy the demand. Thereafter we focus on the analysis of
the results of the demand estimation and the planning of
new lines. The last part is devoted to a discussion of the
results.

Estimation of the Demand

The main objective of this section is to show how demand
can be divided into spatio-temporal areas containing sig-
nificant numbers of similar trips. The study focuses on
the demand of shared mobility in the Midtown and
Upper East Side of New York City (NYC). The objective
is to present the method used to obtain clusters of similar
and recurrent trips over time (meta-clusters). These clus-
ters will be used to define the instances of the optimiza-
tion problem presented in the section, Customized
Supply Design. The methodology is based on three steps:
i) definition of a similarity function to estimate the like-
ness between two trips; ii) implementation of a clustering
method to create clusters of similar trips; and iii) develop-
ment of a method to detect recurrent clusters over time.
However, it is essential to underline that the demand is
analyzed from a transportation point of view even if
many other aspects could be taken into account: eco-
nomic, social, or behaviorial. Our method determines an
upper bound of the potential of shared mobility.

We use an open-source data set released by the New
York City Taxi and Limousine Commission (https://
www1.nyc.gov/site/tlc/index.page). Although these data
are not fully representative of human mobility since they
only correspond to taxi trips, such a data set still pro-
vides an attractive proxy for studying individuals’ routes
within a city. The study focuses on morning peak hours
from 8:00 to 11:00 a.m. in June 2011. The area studied is
a well known high-density area of mobility in New York
City: Midtown and Upper East Side (13, 14). For each
trip i, the data set gives access to the following informa-
tion: departure time tPU

i and location pPU
i =(xPU

i , yPU
i ) of

the pick-up of the passenger(s); arrival time tDO
i and loca-

tion pDO
i =(xDO

i , yDO
i ) of the drop-off.

First, it has been shown that the similarity function is
used to quantify the likeness between two trips. The
method used to detect groups of similar trips in different
spatio-temporal areas is then presented. Finally, we
investigate if commonalities exist between the clusters of
successive studied days.
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Modeling Similarity Between Individual Trips

Several attempts exist in the literature to express the
similarity between two trips (15–17). But these studies
aim mainly at estimating the likeness between trajectories
using variants of Euclidean distance between points of
interest or at measuring the number of points shared by
two trajectories (18, 19). This issue is quite different from
our goal because the number of observations is much
higher in these previous cases. The existing methods used
to estimate the likeness between trips based on variants
of the longest common subsequence problem (LCSS)
need a critical number of observation points to define
trips correctly. Here, only the origin and destination
locations and times are considered. This choice has been
motivated by two main factors. The first is the simplicity
of our method and the low complexity of calculating the
similarity index. The second is data accessibility. Many
data sets exist for which we do not have access to trajec-
tories to describe trips, but only origin–destination pairs.
This method has been developed to estimate the similar-
ity between trips easily and to work with many data sets,
rather than just with data sets containing trajectories.
Unfortunately, the research on the similarity between the
origins and destinations of individual trips is very sparse.
The main contribution to our work on the similarity
between trips is the study of Ketabi et al. (20). The
authors introduce a similarity measure calculated as the
arithmetic mean of the distance between origin–
destination locations to evaluate the proximity between
two trips i and j. This index is the weighted geometric
mean of Euclidean similarity (spatial) and their temporal
similarity. In the following, l indicates a pick-up or a
drop-off; pl

i and tl
i indicate respectively the spatial posi-

tion and the timestamp of a point i. To be consistent
with our modeling framework, we can formulate the
index as follows:

Sim(i, j)=
1

2

X
l2½PU ,DO�

e

w1 ln ( 1

1+ d(pl
i
, pl

j
)
)+w2 ln ( 1

1+ jtl
i
�tl

j
j
)

w1 +w2

0
@

1
A
�1

ð1Þ

where d is the geodesic distance, and w1 and w2 are
weighting factors. The main limitation of the approach
described above to evaluate the similarity (such as the
other attempts based on the Euclidean distance) is that it
does not discriminate. It sufficiently enhances the differ-
ence between trips when applied to origin–destination
locations and desired departure or arrival times only.
Specifically, an index of two trips with similar origins or
destinations, that is d(pl

i, pl
j) close to zero (with d a dis-

tance function), but with significant difference in their
desired departure or arrival times, that is high values of
jtl

i � tl
j j, still remains low. As a consequence, the ability

to cluster methods to capture similar trips deteriorates.

To overcome this drawback, we define a function S(i, j)
to evaluate the similarity between two trips i and j based
on the characteristics of their origins and destinations
(21). From a physical point of view, the intuition is that
two (or more) travelers may have and interest in sharing
their trip if they start in the same neighborhood and at
the same moment, and want to go to the same destina-
tion. The function S must encompass these different
spatio-temporal attributes of the trips. The similarity is
calculated according to the spatio-temporal commonal-
ities between the trips. Let S(i, j) be the similarity func-
tion between trips i and j.

S(i, j)=
X

l2½PU ,DO�
ale
jf l(i, j)j ð2Þ

where f l(i, j) is the feasibility function, and al is a coeffi-
cient. Function f describes the potential of the service to
operate the shared trips, that is the ability to pick up (or
drop off) the two travelers before both of their desired
departure times:

f l(i, j)= jtl
i � tl

j j � gd(pl
i, p

l
j) ð3Þ

where g is the average pace of connecting travelers who
want to share a trip. This parameter is a general and syn-
thetic formula to describe the operation of the service
and the way in which this service gathers two demand
requests into the same vehicle: defining a meeting point,
successive pick-ups, and so forth. For example, if the first
traveler must walk to the second traveler’s pick-up point,
then g is equal to the inverse of the walking speed. If this
distance is traveled by car, meaning that the service offers
door-to-door service, then g is equal to the inverse of the
vehicle speed. Consequently, f is positive if the match
can be realized before the two desired departure times tl

i

and tl
j , whereas f is negative if travelers have to experi-

ence delay to make the match possible. Moreover, al is
equal to 1

2
if f l(i, j).0 and to 3

2
otherwise because it is

more disadvantageous to be delayed. In addition to this
first index of similarity S(i, j), excessive distances/dura-
tions for rendezvous are penalized. Thus, penalties ul

x and
ul

t are added when, respectively, the distances between
origin (or destination) locations and departure (or arri-
val) times of trips i and j exceed, respectively, specific
thresholds, dl

x and dl
t:

ul
x = ed(pl

i
, pl

j
)�dl

x 8l = d(pl
i, p

l
j).dl

x ð4Þ

ul
t = e

jtl
i
�tl

j
j:d

l
x

dl
t

�dl
t 8l = jtl

i , t
l
j j.dl

t ð5Þ

Otherwise, these penalties are null.
In this manner, S(i, j)= S(i, j)+ ul

x + ul
t defines a

sharp function that enhances the differences between
trips and facilitates identification of similar travelers in
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the data set. Notice that S is minimal (and equal to 1)
when the two trips are exactly identical.

Figure 1 highlights the evolution of S (in red) with
regard to the difference between two hypothetical trips.
A comparison with the similarity function Sim of Ketabi
et al. (20) can be made. We complete this comparison by
introducing a naive combination of the Euclidean dis-
tance and the absolute difference in time:

s(i, j)= 1+
X

l2½PU ,DO�
(jtl

i � tl
j j+ d(pl

i, p
l
j)) ð6Þ

The constant 1 is added to have the same minimal value
as S and Sim. Notice that the different functions have
been normalized to make them comparable. It is also
important to remember that trips are similar when differ-
ent functions are minimized. It turns out that Sim and s

have a linear increase (quasi-linear for Sim) with the dif-
ference in departure and arrival times (curves of evolu-
tion with regard to the difference in origin–destination
locations are strictly similar). By contrast, our function S

is much more discriminant. Consequently, differences
between trips are clearly enhanced. This means that it
will be easier to cluster similar trips with good intra-
cluster homogeneity and, simultaneously, significant
inter-cluster dissimilarity.

Detection of Similar Trips for Individual Days

The method presented here allows us to detect spatio-
temporal areas where there is a significant number of
similar trips. The function of similarity introduced above
only estimates the likeness between two trips but does
not detect clusters of similar trips. To detect such groups,
a clustering algorithm is used. The function of similarity
allows us to compute the similarity matrix required by a
clustering algorithm.

A variant of a well known clustering density-based
method (22) is applied for each day to detect groups of
similar trips. This method only requires two parameters: a
threshold e and a minimum number of points MinPts,
which have to be in a radius e so that the studied point is
considered as an element of the cluster. The parameter e
is the maximal distance between trips, that is, the maximal
value of S, allowed to consider them as similar and group
them into the same cluster. However, this method must
be slightly adapted to detect groups of different density.
Thus, a successive DB-SCAN clustering is performed,
that is itdbscan (see [23] for more information), using the
similarity function S as the distance, while updating itera-
tively the values of the parameters. Starting with a large
value of MinPts=M and a drastic e, makes it possible to
identify large groups of travelers in the initial data set of
trip T . In other words, we first detect large and high-
density clusters. Then, the DB-SCAN method is applied

on the remaining non-clustered trips to detect groups of
size M � 1. This process is repeated until MinPts= 2.

Clusters detected have different sizes, from two to 74

trips gathered into the same group. This highlights that
the shared mobility demand may take many aspects
requiring different forms of transportation services to be
optimally satisfied. Figure 2 depicts four clusters with
different sizes and characteristics. The average travel
length lk is directly the arithmetic average of the length
of nk trips within the cluster k, whereas the average travel
time tk is the arithmetic average of the duration of the nk

trips. Figure 2e shows the number of clustered trips and
the total number of trips per day. The developed method
detects almost 85% of similar trips per day on average in
the studied zone.

Identification of Regular Demand Patterns for Multiple
Days

Once this daily analysis is done, we investigate if com-
monalities in the clusters can be identified. Many
approaches exist to derive the most representative parti-
tion from a group of partitions, such as meta-clustering
or consensus learning (24). Here, we use the same cluster-
ing method to maintain consistency when scaling-up. In
the following, to reduce the computational time, we focus
the study on the 14days of the data set for which the
ratio of clustered trips is the highest: June 6th to 19th
2011. The objective is now to find out if similar trips (rel-
atively close departure and arrival locations and times)
are made several times during the studied period. These
recurrent spatio-temporal areas are called meta-clusters.
For that purpose, each cluster previously found is con-
sidered a new trip, formed by the centroid of its pick-up
and the centroid of its drop-off. Centroids correspond to

Figure 1. Comparison of different similarity indexes.
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Figure 2. (a–d) Clusters with different characteristics, the pick-ups are depicted in green and drop-offs in red. nk denotes the number of
trips in the cluster k, lk denotes the average length of trips in k and tk denotes the average duration of trips in k; (a) nk = 4 lk = 0.93 km
tk = 6.5 min; (b) nk = 19 lk = 2.58 km tk = 13.3 min; (c) nk = 30 lk = 1.95 km tk = 9.2 min; (d) nk = 74 lk = 1.56 km tk = 9.8 min; (e) ratio of
clustered trips per day in Midtown and Upper East Side from 8:00 to 11:00 a.m.; (f) Example of demand graph for a randomly selected
meta-cluster.
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the mean origin–destination locations and mean depar-
ture or arrival times of the clustered trips. This informa-
tion can be useful to design the transportation supply
because centroids can be the locations of common meet-
ing points of the standby areas of shared vehicles. A sec-
ond clustering is then performed, it returns clusters with
similar characteristics (without taking into account the
initial day when the trips were made). In other words,
two clusters are in the same meta-cluster if their centroids
have close departure and arrival locations and times. To
this end, function S is extended to consider sets of trips.

In other words, jtl
i � tl

j j and d(pl
i, pl

j) are respectively

replaced by the mean distances, that is
1

nk

Xnk

i= 1
jtl

i � tl
j j

and
1

nk

Xnk

i= 1
d(pl

i, p
l
j) where nk is the number of trips

inside the cluster k. We then normalized these values
because the acceptable delays are strongly related to the
length of the trips. Consequently, the quality index of
cluster k, Q(k), is the function S applied to the set of clus-
tered trips divided by the average length of the trips
within cluster k. Notice that we aim at minimizing the
quality index, that is, the best clusters present values of Q

close to zero. Indeed, Q(k) is low when i) the spatio-
temporal distance between origins is low, ii) the spatio-
temporal distance between destinations is low, and iii)
the mean travel distance is large. A cluster k is selected if
and only if Q(k) is below a specific threshold Qmax. In the
remainder of this study, we set Qmax at 3. It corresponds
to a restrictive matching policy. Interestingly, we observe
that more than 94% of the daily clusters are recurrent
from one day to another.

The representation of a meta-cluster on a 2-D map is
difficult to analyze because the time dimension is not
accounted for. Consequently, we prefer to focus on the
evolution of the daily cluster sizes and the localization of
the related origin–destination locations. Each meta-
cluster can be depicted as a graph of the demand. Figure
2f shows the graph of the demand for a randomly
selected meta-cluster. This figure shows that in the same
spatio-temporal area, similar trips can be seen every day,
except on weekends. Each meta-cluster provides precise
information about its location, its estimated departure
and arrival times, and the total number of trips per-
formed each day. It is important to note that different
individuals perform these trips from one day to another.
However, global human mobility is remarkably regular;
this is a valuable insight to tune transportation services
and favor shared mobility efficiently.

Customized Supply Design

As mentioned in the previous section, the spatio-
temporal areas containing similar and regular trips

(meta-clusters) are detected. The next objective of the
study is to find a way to serve the pick-up and drop-off
points in each of these meta-clusters while respecting a
set of constraints: time windows, vehicle capacity, size of
the fleet, and so forth. A minimal example of the devel-
oped method is depicted in Figure 3. Figure 3a shows a
set of three meta-clusters; each of them contains several
clusters of similar trips. A green marker and a red mar-
ker linked by a blue line depict a cluster containing sev-
eral similar trips. The green and red markers designate
respectively a cluster’s pick-up and drop-off points. A
meta-cluster is depicted by an aggregation of clusters in
the same spatial area. On average, each cluster contains
6:22 similar trips. Moreover, a meta-cluster contains, on
average 8:64 clusters. In other words, each meta-cluster
contains on average 53 trips with very similar character-
istics (see the section, Results). The method aims at
designing a line of transport serving a set of meta-
clusters with compatible characteristics (size, time win-
dows, etc.). Depending on the meta-clusters chosen, the
number and size of vehicles required will be different. To
quantify the potential demand of a tour, we plot the total
number of trips per day served by a tour going through
these meta-clusters. Figure 3c depicts the total number
of trips served per day for the set of meta-clusters
depicted in Figure 3a.

Then, the selection of a set of meta-clusters to find a
potential tour of vehicles is performed. We use the med-
ian number of trips per day in a meta-cluster as an indi-
cator of its size. For each studied period, a minimal
median value required is defined; we filter the meta-
clusters with a median inferior to this value. This method
allows us to obtain a reasonable number of meta-clusters
to solve a relatively small instance of the optimization
problem. However, it should be noted that the solution
is optimal for each period on which we solve the prob-
lem, but an optimal result is not guaranteed for a set of
periods. The meta-clusters found are used to define a
dial-a-ride problem (DARP) instance. Given the large
number of meta-clusters, it is impossible to directly
model vehicle tours from the whole set of meta-clusters.
That is why we focus this study only on high capacity
vehicle tours. This method allows us to serve many pas-
sengers by solving smaller problem instances. The main
advantage of this method is that the calculation time
depends on the number of meta-clusters served rather
than directly on the number of passengers. This is why it
is crucial to find the largest possible meta-clusters. If we
solve the problem for a set of large meta-clusters, the
number of passengers effectively served will be signifi-
cantly higher.

There are many variants for the DARP problem;
(25, 26) give a list of them based on different objective
functions. In our case, we use a variant presented
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in Cordeau (27). This model is depicted below in
Equations 7 to 19. The model is based on a three-index
formulation.

Let G=(V ,A) be a directed graph. The set of vertices
V is partitioned as follows: the first and last elements are
two copies of the depot, elements from index 1 to n are
pick-up and elements from index n+ 1 to 2n are drop-
off. P denotes the set of pick-ups and D the set of drop-
offs. A request is a couple (i, n+ i), where i 2 P and
n+ i 2 D. The load of each vertex is defined as qi, with
q0 = q2n+ 1 = 0, qi ø 0 for i in f1, :::, ng and qi = � qi�n

for i in fn+ 1, :::, 2ng. A service duration di ø 0 with
d0 = d2n+ 1 = 0. K denotes the set of vehicles. The capac-
ity of a vehicle k 2 K is Qk , and Tk denotes the maximal
duration of a route for a vehicle k. The arc set is defined
as: A= f(i, j) j i= 0, j 2 P or i, j 2 P [ D, i 6¼ j and
i 6¼ n+ j, or i 2 D, j= 2n+ 1g the cost of traversing an
arc (i, j) with a vehicle k is ck

ij, and the travel time between
two nodes i and j is tij. L denotes the maximal ride time
and the time window of a vertex i is ½ei, li�. xk

ij is a binary
variable equal to 1 if and only if (i, j) is traversed by a
vehicle k 2 K. Let uk

i be the time at which a vehicle k

Figure 3. Green markers depict the pick-up and red markers the drop-offs: (a) three meta-clusters randomly chosen between 8:15 and
8:35 a.m.; (b) example of line designed, serving the centroids of pick-up and drop-off of each meta-cluster; (c) total number of trips per
day served on the set of three meta-clusters; and (d) shows the number of meta-clusters for each time slot in function of the minimal
median value of trips per day required.
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starts servicing a vertex i, wk
i the load of vehicle k leaving

vertex i, and rk
i the ride time of user i.

(DARP)

Minimize
X
k2K

X
i2V

X
j2V

ck
ijx

k
ij ð7Þ

subject to

X
k2K

X
j2V

xk
ij = 1 (i 2 P), ð8Þ

X
i2V

xk
0i =

X
i2V

xk
i, 2n+ 1

= 1 (k 2 K), ð9Þ

X
j2V

xk
ij �

X
j2V

xk
n+ i, j = 0 (i 2 P, k 2 K), ð10Þ

X
j2V

xk
ji �

X
j2V

xk
ij = 0 (i 2 P [ D, k 2 K), ð11Þ

uk
j ø (uk

i + di + tij)x
k
ij (i, j 2 V , k 2 K), ð12Þ

wk
j ø (wk

i + qj)x
k
ij (i, j 2 V , k 2 K), ð13Þ

rk
i ø uk

n+ i � (uk
i + di) (i 2 P, k 2 K), ð14Þ

uk
2n+ 1 � uk

0 ł Tk (k 2 K), ð15Þ

ei ł uk
i ł li (i 2 V , k 2 K), ð16Þ

ti, n+ i ł rk
i ł L (i 2 P, k 2 K), ð17Þ

max (0, qi)ł wk
i ł max (Qk ,Qk + qi) (i 2 V , k 2 K),

ð18Þ

xk
ij = 0 or 1 (i, j 2 V , k 2 K), ð19Þ

This formulation of the constraints can be described as
follows: constraints 8 and 10 ensure that each request is
served once by the same vehicle. Constraints 9 and 11
aim at verifying that each vehicle starts and ends its trips
at a specific point. This point is often a depot, but in our
model it is a point defined beforehand. Constraints 12 to
14 define starts of service times, vehicle loads, and user
ride times. Constraints 15 to 18 ensure that the con-
straints about the maximal duration of a route 15, a time
window 16, the maximal ride time 17, and the maximal
capacity of each vehicle 18, will be feasible. This model
presents several interesting aspects: multiple vehicles and
time windows for pick-up or drop-off. The main objec-
tive of this method is to minimize the total route length.
However, several other constraints can be added, such as
vehicle capacity, maximum route duration, or maximum
ride time for users. Nevertheless, it is essential to note
that the meta-clusters previously found are independent
of the method chosen to serve them and vice versa.
Indeed depending on the objective searched, one
approach may be more interesting than another. For

example, it could be interesting to use a method to mini-
mize the total route length for a transportation network
company. From a user point of view, it could be more
interesting to use a technique allowing a reduction in the
waiting time before being served. Several methods aim to
satisfy an objective function depicted as a combination
of constraints such as transportation time, ride time,
excess of maximum ride time, waiting time, time win-
dows violations, and so forth (28). A comparison with
these sophisticated methods will be made in a future
study.

Results

This section is devoted to the results of the proposed
method for the case of NYC. First, the meta-clusters are
presented and analyzed. Secondly, based on this demand
decomposition, the optimization method is tested and
evaluated.

Selection of the Spatio-Temporal Areas

First of all, it is interesting to analyze the characteristics
of the meta-clusters found. As mentioned in section on
the method for estimating the demand, in the studied
area between 8:00 and 11:00 a.m., almost 85% of the trips
can be considered similar. Moreover, more than 94% of
trips are recurrent, that is, these trips can be observed
almost every day. There were 2,136 spatio-temporal areas
detected as zones where there was a recurrent potential
demand of shared mobility. On average, each meta-
cluster contained 53 trips. Once again, it is important to
notice that different users surely perform these trips. We
consider below that the user meeting points are defined
as the centroids of pick-ups (respectively drop-offs) of a
meta-cluster. It is thus interesting to know the spatial and
temporal difference between the centroids and the points
of pick-ups and drop-offs. Table 1 shows that the spatial
distances are close to 200m. The average temporal shifts
are nearly 6min which is entirely acceptable. It shows
that the meta-clusters found are relatively close to the

Table 1. Average Spatial and Temporal Distances Between Pick-
Up, Drop-Off and the Centroids of the Meta-Clusters

Variable Result

Average spatial distance pick-up/centroid of pick-
up

0.21 km

Average spatial distance drop-off/centroid of
drop-off

0.21 km

Average shift between departure times/centroid
of departure times

6.16 min

Average shift between arrival times/centroid of
arrival times

6.27 min
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initial clusters estimated from the real user rides. The
average travel distance and time in the meta-clusters are
respectively 1:71 km and 11:1min. Although these data
are not fully representative of human mobility since they
only correspond to taxi trips, such a data set provides an
attractive proxy for studying individual routes within a
city.

First, it is necessary to select a reasonable number of
meta-clusters that will be considered as an instance of the
optimization problem. As noted above, the median num-
ber of trips per day in a meta-cluster is used as an indica-
tor of its size. Figure 3d shows that for each one-hour
period the number of meta-clusters depends on the cho-
sen minimal median value. In other words, a meta-cluster
is counted if and only if its median value of trips per day
is greater or equal to the chosen value. It is important to
note that the number of points effectively treated in the
DARP will be for each period 2 � number of clusters,
because a vehicle serves a pick-up and a drop-off for each
meta-cluster. According to Figure 3d, the minimal med-
ian value 24 has been selected to find potential routes
with many users with very short execution times.

Demand-Driven Route Optimization

This section aims to prove the possibility of designing
microtransit lines to serve the meta-clusters previously
found. We perform an analysis on 18 meta-clusters.
However, all 2,136 meta-clusters could be used to design
new lines in a case of real implementation. The meta-
clusters can be selected according to their mean number
of trips per day or to maximize the lines’ efficiency. This
study allows us to perform a robust and precise estima-
tion of the historical daily demand before the design of
the lines. By extension, it is easy to estimate the size of
the vehicles needed on each designed line. Contrary to
works such as Ma et al. (10), the size of the vehicles is
not fixed to a particular value. In the specific case pre-
sented in this section, we use large-capacity vehicles con-
taining 80 people, which is an adapted size to serve the
selected meta-clusters.

According to the results shown above, the selection of
the spatio-temporal areas, three periods of one hour for
which the meta-clusters contain at least a median of 24

trips per day are selected (18 meta-clusters). Figure 4a
shows the potential number of trips per day that can be
served in the period from 8:00 to 11:00 a.m. This result
illustrates the interests of the method: the 18 meta-
clusters selected actually represent on average 614 trips
per day. The median number of trips served per day for
this set of meta-clusters is 756. Also, we note that the
demand is extremely regular every day of the week
(except weekends) for the two weeks of analysis. In the
case of an effective implementation of optimized lines, it

would be interesting for the service to be operated from
Monday to Friday.

The parameters used for DARP are adjusted for each
period of one hour. Each centroid of pick-up and drop-
off of the meta-clusters is inserted in the sets P and D.
The number of vehicles V for each period is depicted in
Table 2. For each vehicle, its capacity Qk = 80, which
corresponds to the average capacity of a bus. For each
arc (i, j), the cost cij is defined as the spatial distance
between i and j. For each node i, we set the service dura-
tion di = 2min. The load of each pick-up qi is defined as
the number of users to serve. The load of each drop-off
is defined as �qi.We consider that each point can theore-
tically be served until 20min before or after the planned
departure. However this value is not representative of the
real difference between the desired service times and the
effective times of service, but it provides an upper and
lower limit that should not be exceeded. If the values ei

and li are not correctly chosen, the constraint 16 cannot
be satisfied, then no solution will be found. The travel
time between two nodes i and j is estimated according to
the results presented in (14). We set the average speed for
a vehicle to 9.65 km/h.

Figure 4, b to d, show the map of the designed routes
for each period. Each color designates a specific trans-
port line. Table 2 indicates the result of the DARP. For
the three periods, routes allowing service serve to all the
selected meta-clusters in less than 9 s are found. This
result proves that the method is a good way to design
lines serving many users (more than 600 trips per day on
average). Besides, for each period, we calculate the aver-
age delays and time advances for each point served by
the optimized tour. This value is estimated by the differ-
ence between the deesired times of departure and arrival
(given by the centroids of the meta-clusters) and the hour
of service given by the solving of DARP. These values
show that the developed method has relatively little
impact on the demand. Indeed, on average, the delay is
12min and the advance is 10:6min, which is acceptable
since the number of users served is high.

There are no classical optimization methods that we
know of to find round serving such a quantity of similar
and recurrent trips in such a tight timeframe. The theore-
tical studies on DARP (26) show that the exact method
used in this paper can solve instances up to 36 points. It
would not be possible to solve instances with so many
passengers without using an aggregation method in meta-
clusters. The existing dynamic methods such as (1, 29, 30)
obtain trips delay between 2 and 6 min; however, these
services work with large fleets of vehicles with limited
capacities (between 2 and 10). Moreover, these methods
work only on networks with a limited number of nodes.

As mentioned in the introduction, the literature dedi-
cated to microtransit is not as developed as shared
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Figure 4. (a) The total number of users effectively served in the set of meta-clusters selected in the section on the selection of the
spatio-temporal areas; and (b–d) the customized lines found for each period presented in Table 2.

Table 2. Result of the Search of Rounds for the Three Time Periods from 8:00 to 11:00 a.m.

Period 1 Period 2 Period 3 Total

Time 8:00 to 9:00 a.m. 9:00 to 10:00 a.m. 10:00 to 11:00 a.m. 8:00 to 11:00 a.m.
Number of meta-clusters served 8 6 4 18
Number of vehicles required 3 2 1 6
Average delay (min) 16 11 9 12
Average advance (min) 9 12 11 10.6
Total travel distance 36.15 km 19.2 km 12.43 km 67.78 km
Computation time 6.85 s 1.37 s 0.05 s 8.27 s
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mobility services. If several studies are devoted to analyz-
ing specific cases of study, only a few of them have been
focused on the theory of designing microtransit or custo-
mized bus lines. Among them, Han et al. (11) caught our
attention because the authors address the subject of
demand recurrence in the design of responsive transit
lines. Even though the goals of our two respective studies
are quite different, it is interesting to compare the two
approaches. Unlike in our work, the authors do not pro-
vide a method to identify robust patterns of micro-
mobility but use the most frequent trip requests to adapt
the shuttle routes. In other words, they use the historical
data to adjust the functioning of the lines in real time,
but not to design entirely new customized lines. Table 3
summarizes different metrics to compare two methods.
The first column shows the metrics obtained with our
approach, and the second column refers to those pre-
sented in Han et al. (11). Their study focuses on a time
slot from 7:00 to 8:00 a.m. and uses nine buses with a
capacity of 26 people. Our experiment uses only three
buses and focuses on a time slot from 8:00 to 11:00 a.m.
The capacity of the vehicles is 80.

Table 3 shows that the average distances covered by
the vehicles are relatively similar, close to 20km.
However, the total travel distance needed to serve the
pick-up and drop-off is 39% lower in our study. This is a
result of the difference in size between the two studied
areas. We observe that the average delay is reduced by
9min on average in their solution. However, the number
of passengers served by one vehicle is eight times more
important in our study. The execution time for this
experiment is not clearly mentioned in their paper. For

the method presented in our paper, the execution time
for detecting the lines is about 8 s.

This comparison illustrates very well the differences
between the two approaches. The method proposed by
Han et al. (11) seeks to satisfy a demand by taking into
account the specificities of each user trip. Conversely,
our study aims to construct more massive lines to serve
numerous users who are not captured by classic public
transport services while conserving consistent average
delay. Table 3 seems to show that the initial objectives of
our paper have been achieved. Moreover, despite the
constraints in vehicle speeds in the area studied
(Midtown and Upper East Side), the indicators stay
attractive in a context where the urban density of mobi-
lity is very high.

Conclusion

This article presents an optimization method based on a
decomposition of the demand and a resolution of DARP
on a reduced instance. This data-driven method allows
us, for the first time, to identify clusters of similar and
regular trips over time (meta-clusters). These meta-
clusters are then considered as points to serve in an
instance of DARP. The main interest of this method is
to design tours of vehicles to serve many potential users.
As shown in the section on results, the main advantage
of this method is that the execution time of the optimiza-
tion problem does not depend on the number of users
served, but only on the number of meta-clusters served.

As part of this study, the analysis of pattern recur-
rence was carried out over two weeks. However, the pro-
posed method makes it possible to detect regular patterns
over much more extended periods. This can be particu-
larly useful in the case of effective implementation of
transport lines. It is also possible to integrate many other
parameters into the objective function of DARP to
design lines as close as possible to actual user demand.

The results obtained show us that rounds of large-
capacity vehicles (80 people) can be identified. Making it
possible to serve on average more than 600 trips a day
with calculation times lower than 9 s. This method of
designing microtransit lines allows the development of
high capacity lines based on the demand of mobility.
Moreover, it allows us to obtain lines with restricted
spatio-temporal deviations from the demand described
by the centroids of the meta-clusters. Setting up massive
lines close to the initial demand of users provides a par-
tial response to the last mile problem, which is one of the
main obstacles to shifting users of private vehicles to
shared modes of transport.

Several ways are studied to complete the current
method. The first is to take real-time aspects into account
in the method. This can be done in several ways, either

Table 3. Comparison of Performances

Meta-clustering
method

RTRCB
method

Studied time slot 8:00 to 11:00 a.m. 7:00 to 8:00 a.m.
Number of vehicles

used
3 9

Average number of
passengers served
per bus

204 26

Average delivery delay
(min)

12 min* 3 min**

Capacity of the
vehicles

80 26

Average distance
by vehicles

22.59 km 19.35 km

Total travel distance
(km)

67.78 174.17

Execution time (s) 8.27 NA

Note: RTRCB = Real-Time Responsive Customized Bus.
*In Relation to the Schedules of the Centroids of the Meta-Clusters.
**For 94.44% of the Travels

NA = not available
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with instant classification or by taking into account the
results obtained to anticipate future demand. Another
interesting aspect is the design of more or less dynamic
lines according to the demand in a studied area. For
example, depending on the number of users and the
required responsiveness of the service, different solutions
can be implemented: classic or dynamic bus lines, taxis,
and so forth. Finally, taking into account the dynamic
aspects of the network to choose routes according to the
network’s particular events: congestion, roadworks, and
so forth, seems to be an excellent way to improve the cur-
rent method. Finally, the method’s scalability will be
widely studied to maximize the number of data processed
and thus the veracity of the results obtained.
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